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1- Summary
This report details an approach to quality control in Fused Deposition Modeling (FDM) 3D
printing, combining a real-time, vision-based fault detection system with a kinematically
optimized 5-DOF robotic manipulator. The fault detection system, built with multiple YOLO (You
Only Look Once) Convolutional Neural Network (CNN) models, identifies and classifies defects
in real-time. The robotic manipulator addresses a key limitation of fixed cameras—blind
spots—by dynamically positioning a camera to capture previously inaccessible areas of the print
in process. This integrated solution enhances the reliability, precision, and efficiency of additive
manufacturing.

2- Project Objectives
1. Develop a Real-Time Fault Detection System: Enable automated identification of

common FDM defects such as blobs, cracks, and under-extrusion.
2. Introduce a Robotic Manipulator to Mitigate Blind Spots: Use a 5-DOF robotic arm to

dynamically adjust camera angles, improving coverage and monitoring precision.
3. Optimize CNN Model Integration for Real-Time Performance: Employ YOLOv4 Tiny,

YOLOv5, YOLOv8, and YOLOv10 for a balanced solution that combines detection
accuracy with processing speed.

4. Implement Adaptive Learning for Enhanced Accuracy: Continuously refine the defect
detection models based on real-time data.

3- Background and Rationale
3.1 Industry Context

As industries increasingly turn to 3D printing for custom, high-precision components, quality
control has become essential. FDM 3D printing is a cost-effective manufacturing technique but
can suffer from quality issues, with defects compromising structural integrity and increasing
waste. Traditional quality control methods, such as manual inspections, often lack the speed
and consistency needed for real-time defect monitoring.

3.2 Technology Overview

This project addresses these challenges by combining:

● CNN-Based Fault Detection: A YOLO-based fault detection system monitors the FDM
printing process in real time, identifying defects that could impact the quality of the
printed part.
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● Robotic Manipulator for Dynamic Camera Positioning: A 5-DOF robotic manipulator
enables flexible camera movement to eliminate blind spots in the fault detection system,
ensuring comprehensive monitoring of the entire printing process.

4- Proposed Solution Overview

4.1 Fault Detection System

The fault detection system uses a set of CNN models to identify defects during the printing
process:

● 3D Printer and High-Resolution Camera Setup: The camera captures live video feeds
of the print in progress.

● Computing Unit: Processes video frames with YOLO models (YOLOv4 Tiny, YOLOv5,
YOLOv8, YOLOv10) to detect and classify defects.

● Real-Time Monitoring and Logging Interface: Detected faults are displayed and
logged in real time, providing valuable data for immediate intervention or post-analysis.

4.2 Robotic Manipulator Integration

The 5-DOF robotic manipulator, with its precise control over camera positioning, addresses the
limitation of blind spots in fixed camera systems. By adjusting the camera’s position and
orientation, it enables full 360-degree coverage of the printing process:

Figure 1: 3D model of the 5-DOF robotic
manipulator integrated with the camera
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4.3 Adaptive Learning Module

An adaptive learning module refines model performance over time by incorporating real-time
data, enhancing defect detection for newly observed types of defects or changing printing
conditions.

5- System Architecture and Methodology

5.1 Fault Detection Workflow

1. Video Stream Quality Assessment: Frames are checked for quality parameters such
as brightness, focus, and contrast, filtering out suboptimal frames.

2. Defect Detection: YOLO models analyze frames, classifying defects, with each model
tailored to specific types of faults.

3. Data Logging and Analysis: Detected defects are logged with information on type,
location, and timestamp, creating a record for quality control analysis

Figure 2: Example of Acceptable vs. Unacceptable Frame.

5.2 Robotic Manipulator Kinematic Model

The 5-DOF robotic manipulator’s kinematic model, based on Denavit-Hartenberg (DH)
parameters, enables controlled, precise positioning of the camera:

● Forward and Inverse Kinematics: FK calculates end-effector positions, while IK
determines joint angles for desired camera orientations.
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● Jacobian Analysis: The Jacobian matrix is used for velocity control and singularity
avoidance, ensuring smooth, uninterrupted monitoring.

Figure 3: Robotic Arm Frame Assignment and Singularity Map.

5.3 Integration of Adaptive Learning

To ensure continuous accuracy improvement, an adaptive learning system updates the
detection models with new defect data, refining their response to changing conditions

5.4 Model Selection and Integration
Four YOLO models—YOLOv4 Tiny, YOLOv5, YOLOv8, and YOLOv10—were selected for their
unique strengths in terms of speed, accuracy, and computational efficiency. The combined use
of these models allows the system to adapt to different defect types and operating conditions.

YOLOv4 Tiny

● Speed: Fast (60 ms), Accuracy: Moderate, Resources: Low
● Best for: Basic, low-resource setups
● Limit: Limited for complex defects

YOLOv5

● Speed: Moderate (18.6 ms), Accuracy: High, Resources: Moderate
● Best for: Balanced performance
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● Limit: Higher resource demand

YOLOv8

● Speed: Fastest (15.6 ms), Accuracy: Very High, Resources: High
● Best for: Real-time, high-accuracy detection
● Limit: High computational load

YOLOv10

● Speed: Moderate (20.3 ms), Accuracy: High, Resources: Moderate-High
● Best for: Advanced feature detection
● Limit: Needs tuning

6- Data Collection and Model Training

6.1 Dataset Preparation
The dataset includes 2,221 images annotated for six common FDM printing defects: blobs,
cracks, spaghetti, stringing, under-extrusion, and warping. Images were sourced from open
repositories and augmented to improve model robustness.

Table 1: Defect
Types and
Dataset

Distribution.

6.2 Training and Testing

YOLO models were trained using the Darknet framework on an NVIDIA GPU-enabled
computing unit. Model performance was validated against a reserved subset of data to evaluate
accuracy, precision, and inference speed.
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7- System Implementation

7.1 Hardware and Software Requirements

● Hardware: 1080p minimum cameras, NVIDIA RTX 3060 GPU, Ryzen 5000 CPU, 32GB
RAM.

● Software: Anaconda with Darknet, Python 3.8, OpenCV 4.5.5 with CUDA, and Roboflow
for dataset management.

7.2 Real-Time Fault Detection and Logging

Faults detected by the YOLO models are highlighted in real-time, with defect data such as type,
coordinates, and timestamps logged for further analysis.

Figure 4: Real-Time Fault Detection in FDM Printers.

7.3 Integration with FDM 3D Printer

The system interfaces with the Creality CR-10S Pro V2 printer, using USB serial communication
and G-code commands for control, allowing immediate intervention upon defect detection.
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7.4 Robotic Manipulator for Comprehensive Coverage

The robotic manipulator’s flexibility enables dynamic repositioning of the camera, covering
hard-to-reach areas and blind spots on large or complex 3D prints.

8- Results and Evaluation

8.1 Fault Detection System Performance

Each YOLO model was assessed for detection accuracy, speed, and computational efficiency.
YOLOv8 demonstrated the best balance for real-time monitoring:

Table 2: Performance Metrics of YOLO Models.

8.2 Kinematic Simulation and Validation
The 5-DOF manipulator’s FK and IK models were validated against target positions, ensuring
accurate and reliable camera placement throughout the print:
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Metric YOLOv4 Tiny YOLOv5 YOLOv8 YOLOv10

Mean Average Precision
(mAP@0.50)

81.4% 87.5% 89.3% 86.0%

mAP@0.50:0.95 (%) 58.4% 62.3% 71.4% 64.9%

Precision (%) 77.0% 91.4% 90.3% 88.1%

Recall (%) 81.0% 84.0% 86.7% 80.2%

F1-Score 0.79 0.80 0.87 0.84

Inference Time (ms) 60 18.6 15.6 20.3



Point Target Position (X, Y, Z) FK Result (X, Y, Z) Error (Distance)

1 (0.50, 0.30, 0.50) (0.50, 0.30, 0.49) 0.01

2 (0.40, 0.30, 0.45) (0.41, 0.30, 0.45) 0.01

3 (0.30, 0.30, 0.40) (0.30, 0.30, 0.41) 0.01

4 (0.20, 0.30, 0.35) (0.20, 0.31, 0.35) 0.01

5 (0.10, 0.30, 0.30) (0.10, 0.30, 0.30) 0.00

6 (0.00, 0.30, 0.25) (0.00, 0.30, 0.26) 0.01

Table 3: Kinematic Validation of Target vs. Actual Positions.

Figure 5: End-Effector Path and Joint
Angles for Target Trajectories.

8.3 Adaptive Learning Impact on Detection Accuracy

The adaptive learning component improved detection accuracy by 4.1% over six months,
significantly reducing the false positive and negative rates.
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Metric Initial (%) 3 Months (%) 6 Months (%)

mAP@0.50 (%) 89.3 91.7 93.4

Precision (%) 90.3 92.1 94.2

Recall (%) 86.7 88.9 91.5

Table 4: Impact of Adaptive Learning on Model Performance.

8.4 Torque Dynamics and Robotic Stability

Torque and energy analyses were performed to ensure the robotic manipulator operates within
safe mechanical limits, maintaining stability during dynamic camera adjustments:

Figure 6: Torque Distribution across Robotic Joints.
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8.5 Error Analysis and Mitigation

Misclassifications between similar defect types, such as 'Cracks' and 'Stringing,' were identified
and addressed through data augmentation and model fine-tuning. Further improvements were
achieved by using ensemble methods to combine model predictions.

Table 6: Performance after/Before Mitigation

8.6 System Scalability and Long-Term Impact

Over a three-month testing period, the system achieved a 30% reduction in print errors, saving
approximately 58.5 kg of filament. The adaptive learning mechanism enabled continued
accuracy improvements, contributing to material savings and operational efficiency.

Table 7: Long-Term Performance Metrics

Figure 7: Monthly Filament Savings
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9- Discussion

9.1 Eliminating Blind Spots with Robotic Manipulation

The addition of the 5-DOF robotic manipulator effectively addresses the limitations of a fixed
camera setup, providing full 360-degree monitoring coverage and enabling detailed,
uninterrupted observation of complex prints. The robotic arm’s kinematic configuration allows it
to reposition the camera dynamically, eliminating blind spots and ensuring high-resolution
capture of the entire print surface.

9.2 Impact of Adaptive Learning on Detection System

Adaptive learning has proven effective in enhancing detection accuracy, allowing the system to
adapt to variations in print conditions and new defect types over time. This capability is
especially valuable in ensuring long-term operational reliability.

10. Conclusion and Recommendations

10.1 Summary of Achievements

This project successfully developed a real-time fault detection system that integrates
YOLO-based defect classification with a 5-DOF robotic manipulator for enhanced monitoring
flexibility. Key contributions include:

● Improved Defect Detection: Achieved through YOLO models and adaptive learning.
● Elimination of Blind Spots: Enabled by dynamic camera positioning with a 5-DOF

robotic manipulator.
● Enhanced Accuracy and Efficiency: Through adaptive learning and kinematic

analysis.

10.2 Future Work

Future enhancements could focus on:

● Real-Time Fault Correction: Directly linking the detection system to the printer’s control
to automatically correct print parameters.

● Predictive Maintenance with Machine Learning: Preemptively identifying potential
issues based on historical defect data.
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Sarp
Add your part here , use the same structure as above

1- Summary
This project focuses on advancing the 3D printing of electric machine components through
innovative design and material applications. It encompasses the creation and optimization of
various motor types, including an DC brushless motor developed from open-source designs.
The core objective is to enhance the performance and functionality of these motors by exploring
novel design approaches and utilizing advanced materials like iron-embedded PLA for stator
cores and steel-embedded PLA for structural components such as casings, rods, and bolts.

By incorporating the advanced fault detection system detailed in the broader project, this work
aims to ensure the production of defect-free, high-quality 3D printed motor components. This
integration is critical to achieving consistent performance and reliability, laying the foundation for
the development of superior electric machines. This approach leverages the capabilities of
additive manufacturing, driving innovation in motor design and optimizing efficiency and
precision across various motor types.

2- Project Objectives
1. Develop and Customize 3D-Printed Electric Machine Designs: Start by using and

modifying open-source motor models, embedding advanced materials such as
iron-embedded PLA. Progressively move toward creating unique, tailored designs
optimized for specific electric machine applications.

2. Analyze and Evaluate Motor Performance: Conduct thorough performance testing and
analysis of the initial printed motors, focusing on efficiency, durability, magnetic
properties, and structural integrity. Use this data to guide iterative improvements.

3. Integrate Advanced Materials for Enhanced Functionality: Experiment with and
incorporate materials such as iron-embedded PLA for stator cores and steel-embedded
PLA for other components, like casings, rods, and bolts, to optimize both mechanical
and electrical performance.

4. Incorporate Fault Detection for Quality Assurance: Use the fault detection system
from the broader project to monitor and eliminate defects in real-time during the 3D
printing process, ensuring high-quality, defect-free parts for electric machine
components.
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5. Iteratively Refine Motor Designs and Performance: Based on performance analysis
and material testing, create and model original 3D designs, print these unique models,
and iteratively refine both the designs and printing parameters to achieve the highest
levels of performance, reliability, and efficiency

3- Background and Rationale

3.1 Importance of 3D Printing for Electric Machines

Additive manufacturing, particularly Fused Deposition Modeling (FDM), has revolutionized the
production of custom electric machine components. Its ability to create complex geometries,
integrate multifunctional materials, and reduce manufacturing costs makes it a powerful tool for
innovation in the field of electric machines. 3D printing enables the rapid prototyping of motors
and other components, offering unprecedented flexibility in design and material application.

3.2 Challenges in 3D Printing for Electric Machines

Despite its potential, the 3D printing of electric machine components presents several
challenges:

• Ensuring precise material deposition for magnetic and structural components.

• Managing defects such as under-extrusion, warping, or delamination that can
compromise the functionality of the components.

• Thermal management, especially for materials like iron-embedded PLA, which may
exhibit thermal sensitivity during operation.

• Achieving consistent quality and performance in components with unique material
properties like magnetic PLA.

4- Proposed Solution Overview
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4.1 Material Advancements
This project focuses on testing a variety of PLA filaments with embedded magnetic and metallic
properties to determine their suitability for 3D-printed electric machine components. The
materials being evaluated include iron-embedded PLA for stator cores and steel-embedded PLA
for structural components like casings, rods, and bolts. Key material properties such as
magnetic permeability, mechanical strength, thermal stability, and electrical conductivity are
analyzed to assess their performance under real-world operating conditions. Comparative
testing will focus on how these materials influence the overall efficiency, durability, and
functional performance of the electric machines.

4.2 AI Driven Design Optimization
The project incorporates AI-driven tools to refine and enhance the design of 3D-printed electric
machine components. Based on the results of material testing and performance analysis,
design errors will be systematically evaluated to identify areas for improvement. Using insights
from these evaluations, a unique and optimized design will be developed with the assistance of
AI tools. These tools enable predictive modeling, defect mitigation, and iterative refinement of
geometries to address material-specific challenges such as layer bonding, magnetic flux
distribution, and structural integrity. The goal is to create an innovative design that not only
eliminates 3D printing defects but also maximizes the performance and reliability of the electric
machines, leveraging the synergy of advanced materials and AI-driven design processes.

4.3 Thermal Management
Thermal issues in 3D-printed electric machines will be addressed by utilizing thermal imaging
cameras to identify areas of excessive heat generation in the printed motors. These
investigations will guide targeted design improvements, such as adding cooling channels or
optimizing material distribution in problematic areas. AI tools will assist in analyzing thermal
patterns and suggesting design modifications to enhance heat dissipation, ensuring optimal
performance and reliability.

4.4 Precision and Quality Control
Precision and quality control in the 3D printing process will be overseen by integrating the fault
detection system developed in the broader project. This advanced system will monitor the
printing process in real-time, identifying and addressing defects such as layer misalignment,
under-extrusion, and surface irregularities. By leveraging this system, the project ensures the
production of high-quality, defect-free components, enhancing both the reliability and
performance of the electric machine parts.
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5- Methodology
In this phase of the project, a fully functional 3D-printed DC brushless motor has been
successfully constructed using parts and designs sourced from open-source repositories. This
motor serves as a proof of concept for the integration of advanced materials and optimized
designs. Additionally, work has begun on a second motor, designed specifically for underwater
operation. This underwater motor, also based on parts and designs found in open-source
repositories, is currently a work in progress and highlights the project’s aim to explore innovative
and versatile applications of 3D-printed electric machines.

Figure 1: CAD Design of the main open-source model constructed using 3D printing

Figure 2: CAD Design of the secondary open-source model constructed using 3D printing
(design for underwater applications)
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Figure 3: Two variations of the main open-source motor model constructed using 3D printing:
the left model is made entirely of iron-embedded PLA, while the right model uses

iron-embedded PLA only for the core

6- Results and Evaluation
The virtual motor was modeled in JMAG-Express Online based on the exact dimensions and
specifications of the 3D-printed motor created during the project. This simulation replicates the
physical attributes of the printed motor to evaluate its expected performance and identify
potential areas for improvement.
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Figure 4: Virtual construction of the main model to anticipate the results

The following tables present the expected results for the motor, simulated using JMAG-Express
Online. This tool was utilized as a practical alternative due to the current lack of access to more
advanced simulation tools such as ANSYS Maxwell. However, if further research or detailed
analysis is required, integrating ANSYS or other comprehensive tools into the project workflow
will be considered.
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Figure : Simulation results of the virtual construction of the main model in JMAG-Express
Online, presented across eight graphs

9- Discussion

These results will be used as a baseline for comparison with:

1. A motor constructed using fully iron-embedded PLA.

2. A motor with iron-embedded PLA limited to the core.

3. A commercially available motor with similar dimensions and specifications.

This comparative analysis aims to evaluate the impact of material choices on performance
metrics such as torque, efficiency, and thermal behavior. By benchmarking against a
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market-available motor, the project will also assess the feasibility and potential of 3D-printed
motors in practical applications.

It is anticipated that there will be only a small difference between the two constructed
motors—one made with fully iron-embedded PLA and the other with iron-embedded PLA limited
to the core. The expected superiority of the fully iron-embedded PLA motor is attributed to its
enhanced magnetic properties; however, this remains a hypothesis until validated through
physical testing.
Neither of the 3D-printed motors is expected to achieve performance parity with the
commercially available motor. Nevertheless, the primary objective of this project is to innovate
and refine 3D-printed motor designs to progressively achieve a performance level comparable
to that of market-standard motors, thereby exploring the feasibility of additive manufacturing in
high-quality electric motor production.

10- Conclusion and Recommendations
10.1 Summary of Achievements

As part of the project, two 3D-printed motors with distinct configurations have been successfully
developed. The first motor uses iron-embedded PLA exclusively for the stator core, while the
second motor incorporates iron-embedded PLA in all components except for bolts and rods.
These motors will undergo comprehensive testing to evaluate their magnetic properties and
overall performance. Additionally, the printing process for an underwater motor has been
initiated, marking significant progress in exploring diverse applications of 3D-printed electric
machines. This systematic approach aims to provide valuable insights into the capabilities and
limitations of various materials and designs.

10.2 Future Work

The project is currently focused on the “Analyze and Evaluate Motor Performance” and
“Integrate Advanced Materials for Enhanced Functionality” stages. These tasks are being
conducted simultaneously to accelerate progress and ensure a cohesive development process.
By testing the performance of initial motor designs and experimenting with advanced materials
such as iron-embedded and steel-embedded PLA, the project aims to gather critical insights for
refining designs and enhancing functionality.

Future efforts will build on these findings, transitioning to iterative design refinement and the
development of unique motor models tailored for superior performance. Additionally,
incorporating insights from thermal management and quality control will further optimize the
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production process and ensure the reliability and efficiency of the final electric machine
components.
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